How to use Docker, Kubernetes, and Helm Charts to deploy your VLINGO XOOM platform services.
The following shows how to set up a Reactive, scalable, event-driven application based for VLINGO XOOM, being deployed on Kubernetes and packaged by Helm Chart.
Quick start with VLINGO XOOM
First, we need a project structure that allows us to start building our application. That's when XOOM Designer comes to play. It saves a lot of effort providing a web/graphical user interface to generate initial development resources such as application files, directory structure, Dockerfile and much more. Once it is installed, you can use the project generator wizard running the following command:
$ ./xoom gui
This command will open your preferred browser. Just fill in the wizard steps so the project will be generated and ready to start the development.
Building the Docker image
If you choose either Docker or Kubernetes on the deployment step, a Dockerfile will be placed in the root folder:
That means the image is ready to be built along with the executable jar. Both tasks are performed through a single Starter CLI command:
$ ./xoom docker package
Now, let's tag and publish this local image into Docker Hub.
$ ./xoom docker push
You can find more information on xoom docker push and other containerization shortcut commands here.
Alternative Without VLINGO XOOM
The previous steps are pretty similar for a VLINGO XOOM service or application without VLINGO XOOM. The executable jar, including the dependency jars, can be generated with the following plugin configuration:
Kubernetes is the chosen tool for container orchestration. In this scenario, it will run a single node cluster serving the VLINGO XOOM application. Whereas kubeadm is installed, the cluster initialization is showed below:
Kubernetes supports multiple networking model implementations. For now, we choose Calico. Its network policy configuration file can be added using kubectl, the command line tool for controlling Kubernetes clusters:
Considering the single node cluster is the option for this example, the last step is to prepare the master node by removing taints which, in short, prevents a deployable unit (Pods) to run on it.
At this point, we need to tell Kubernetes what is the application desired state and how we want to expose our services, number of replicas, allocated resources... The simpler way is through Helm, a special tool for Kubernetes application management. It simplifies installation, upgrade, scaling and other common tasks. Getting started, let's create a chart, which is a collection of files inside of a directory. This is how it's made:
$ ./helm create xoom-example
The output looks like the following structure:
xoom-example/
Chart.yaml # A YAML file containing information about the chart
LICENSE # OPTIONAL: A plain text file containing the license for the chart
README.md # OPTIONAL: A human-readable README file
values.yaml # The default configuration values for this chart
values.schema.json # OPTIONAL: A JSON Schema for imposing a structure on the values.yaml file
charts/ # A directory containing any charts upon which this chart depends.
crds/ # Custom Resource Definitions
templates/ # A directory of templates that, when combined with values,
# will generate valid Kubernetes manifest files.
templates/NOTES.txt # OPTIONAL: A plain text file containing short usage notes
In this basic scenario, all we need to do is editing values.yaml , informing the Docker image repository, service type / port and number of replicas:
# Default values for xoom-example.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.
replicaCount: 3
image:
repository: [publisher]/xoom-example
...
service:
type: ClusterIP
port: 8080
Using lint, we can check if the chart is well-formed after the addition:
We finish the deployment step executing the install command:
$ ./helm install xoom-example
A new Pod is created by Kubernetes to hold the xoom-example app. You should check if it's running fine:
$ ./kubectl get pods
NAME READY STATUS RESTARTS AGE
xoom-example-765bf4c7b4-26z48 1/1 Running 0 64s
Also, it is recommended to check the application logs:
$ ./kubectl logs xoom-example-765bf4c7b4-26z48
Helm also supports a packaging and versioning mechanism, that is, a set of commands that allows us to package the Chart structure and files to make it collaborative. First, an index.yaml file should be created based on a Git repository, that will be the chart repository:
$ ./helm repo index chart-repo/ --url https://<username>.github.io/chart-repo