Containerization

How to use Docker, Kubernetes, and Helm Charts to deploy your VLINGO XOOM platform services.

The following shows how to set up a Reactive, scalable, event-driven application based for VLINGO XOOM, being deployed on Kubernetes and packaged by Helm Chart.

Quick start with VLINGO XOOM

First, we need a project structure that allows us to start building our application. That's when XOOM Designer comes to play. It saves a lot of effort providing a web/graphical user interface to generate initial development resources such as application files, directory structure, Dockerfile and much more. Once it is installed, you can use the project generator wizard running the following command:

$ ./xoom gui

This command will open your preferred browser. Just fill in the wizard steps so the project will be generated and ready to start the development.

Building the Docker image

If you choose either Docker or Kubernetes on the deployment step, a Dockerfile will be placed in the root folder:

FROM adoptopenjdk/openjdk11-openj9:jdk-11.0.1.13-alpine-slim
COPY target/xoom-example-*.jar xoom-example.jar
EXPOSE 8080
CMD java -Dcom.sun.management.jmxremote -noverify ${JAVA_OPTS} -jar xoom-example.jar

That means the image is ready to be built along with the executable jar. Both tasks are performed through a single Starter CLI command:

$ ./xoom docker package

Now, let's tag and publish this local image into Docker Hub.

$ ./xoom docker push

You can find more information on xoom docker push and other containerization shortcut commands here.

Alternative Without VLINGO XOOM

The previous steps are pretty similar for a VLINGO XOOM service or application without VLINGO XOOM. The executable jar, including the dependency jars, can be generated with the following plugin configuration:

The Dockerfile requires the jar with dependencies:

Now, besides the application itself, the Docker image is ready to be built and published:

Kubernetes Deployment

Kubernetes is the chosen tool for container orchestration. In this scenario, it will run a single node cluster serving the VLINGO XOOM application. Whereas kubeadm is installed, the cluster initialization is showed below:

Secondly, the settings folder should be mapped:

Kubernetes supports multiple networking model implementations. For now, we choose Calico. Its network policy configuration file can be added using kubectl, the command line tool for controlling Kubernetes clusters:

Considering the single node cluster is the option for this example, the last step is to prepare the master node by removing taints which, in short, prevents a deployable unit (Pods) to run on it.

Management and Deployment With Helm Chart

At this point, we need to tell Kubernetes what is the application desired state and how we want to expose our services, number of replicas, allocated resources... The simpler way is through Helm, a special tool for Kubernetes application management. It simplifies installation, upgrade, scaling and other common tasks. Getting started, let's create a chart, which is a collection of files inside of a directory. This is how it's made:

The output looks like the following structure:

In this basic scenario, all we need to do is editing values.yaml , informing the Docker image repository, service type / port and number of replicas:

Using lint, we can check if the chart is well-formed after the addition:

With template command, we can see all files that Helm will generate and install into Kubernetes:

We finish the deployment step executing the install command:

A new Pod is created by Kubernetes to hold the xoom-example app. You should check if it's running fine:

Also, it is recommended to check the application logs:

Helm also supports a packaging and versioning mechanism, that is, a set of commands that allows us to package the Chart structure and files to make it collaborative. First, an index.yaml file should be created based on a Git repository, that will be the chart repository:

Next, the remote repository is added:

At last, enable the chart installation from the repository:

More information

Find a complete code example on GitHub, built on a DDD microservices architecture, combining Kubernetes, Helm Chart and VLINGO XOOM.

Last updated